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Assessment of Heterogeneity
in Lung Structure and Function
During Mechanical Ventilation:
A Review of Methodologies
The mammalian lung is characterized by heterogeneity in both its structure and function,
by incorporating an asymmetric branching airway tree optimized for maintenance of effi-
cient ventilation, perfusion, and gas exchange. Despite potential benefits of naturally
occurring heterogeneity in the lungs, there may also be detrimental effects arising from
pathologic processes, which may result in deficiencies in gas transport and exchange.
Regardless of etiology, pathologic heterogeneity results in the maldistribution of regional
ventilation and perfusion, impairments in gas exchange, and increased work of breathing.
In extreme situations, heterogeneity may result in respiratory failure, necessitating sup-
port with a mechanical ventilator. This review will present a summary of measurement
techniques for assessing and quantifying heterogeneity in respiratory system structure
and function during mechanical ventilation. These methods have been grouped according
to four broad categories: (1) inverse modeling of heterogeneous mechanical function; (2)
capnography and washout techniques to measure heterogeneity of gas transport; (3)
measurements of heterogeneous deformation on the surface of the lung; and finally (4)
imaging techniques used to observe spatially-distributed ventilation or regional deforma-
tion. Each technique varies with regard to spatial and temporal resolution, degrees of
invasiveness, risks posed to patients, as well as suitability for clinical implementation.
Nonetheless, each technique provides a unique perspective on the manifestations and
consequences of mechanical heterogeneity in the diseased lung.
[DOI: 10.1115/1.4054386]

Introduction

By its very nature, the mammalian lung is characterized by het-
erogeneity in its structure, by incorporating an asymmetric,
fractal-like branching airway and vascular trees optimized through
evolution for maintenance of efficient ventilation, perfusion, and
gas exchange within irregularly shaped boundaries [1]. The
branching structure of airways also contributes to mixing and
homogenization of regional gas concentrations, due to asymmetric
variations in velocity profiles during inspiration and expiration, as
well as repetitive division and recombination of gas flows origi-
nating from mechanically disparate lung regions. The structural
composition and intrinsic mechanical properties of airway seg-
ments are also highly variable along the pathways between the tra-
chea and alveolar spaces [2,3]. Structural heterogeneity and
complexity are thus inherent characteristics of respiratory function
[4], and may even serve a protective role in maintaining stability
against perturbations [5,6], including abnormal conditions influ-
encing morphogenesis and development [7]. Despite the potential
beneficial effects of naturally occurring structural heterogeneity in
the lungs, there may also be detrimental effects arising from path-
ologic processes, which may result in functional deficiencies in
gas transport and exchange [8]. For example, progressive destruc-
tion of the parenchyma in emphysema, regional ventilation
defects due to asthmatic bronchoconstriction, or alterations in

parenchymal compliance in the acute respiratory distress syn-
drome (ARDS) can all occur in a heterogeneous pattern through-
out the lung [9]. Regardless of etiology, such heterogeneity results
in the maldistribution of regional ventilation and perfusion,
impairments in gas exchange, and increased work of breathing. In
extreme situations, pathologic heterogeneity may result in fulmi-
nant respiratory failure and require additional support with a
mechanical ventilator. However, the presence of mechanical het-
erogeneity during positive pressure ventilation may also lead to
regional overdistension (volutrauma) and/or repetitive recruitment
and collapse (atelectrauma). The injuries associated with cyclic
overdistension and recruitment are collectively termed ventilator-
induced lung injury (VILI) [10]. Patients with heterogeneous
lungs are particularly at risk for VILI, due to the increased preva-
lence of regional asymmetries in ventilation [11,12]. For example,
atelectasis in one lung region may lead to overdistension in other
lung regions [13]. Volutrauma and parenchymal rupture induced
by regional overdistension may also result in local inflammation
and edema, redistributing ventilation elsewhere and allowing for
the development of injury in other regions [14]. Atelectatic
regions which are repetitively recruited and collapsed during ven-
tilation are subjected to injurious shear stresses, causing additional
inflammation and cell death [15]. The parenchyma between col-
lapsed (or edematous) alveoli and normal alveoli may sustain
VILI by both atelectrauma and volutrauma, through a
permeability-originated obstruction response that is self-
perpetuating [15]. Regional lung injury may also result in the
release of inflammatory mediators into the pulmonary and sys-
temic circulation (biotrauma), potentially contributing to worsen-
ing respiratory failure and multiple organ failure [16]. Thus, VILI
may become a spiraling process of progressively worsening lung
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injury (Fig. 1), wherein the amount of normally functioning lung
diminishes over time as the amount of nonfunctioning injured
lung rises, due to the increasing mechanical burden imposed by
heterogeneously distributed ventilation [17].

Strategies for providing safe mechanical ventilation attempt to
minimize the risk of VILI by using a combination of appropriate
end-expiratory pressures to maintain lung recruitment, and small
tidal volumes (or driving pressures) to avoid overdistension
[18,19]. Such modalities are referred to as “lung-protective” venti-
lation, to emphasize the strategic goal of reducing the potential for
further injury caused by volutrauma and atelectrauma. For exam-
ple, standard clinical treatment of ARDS involves the use of low
tidal volumes (i.e., �6 mL kg�1), and a protocolized, stepwise
decision sequence for modifying positive end-expiratory pressure
(PEEP) and the fraction of inspired oxygen concentration (FIO2)
based on the severity of hypoxemia [18]. Alternative protective
ventilation strategies may also be considered, including oscilla-
tory ventilation [20], biologically variable ventilation [21], or air-
way pressure release ventilation [22]. Several additional
techniques have also been suggested to improve outcomes in
patients with ARDS, including prone positioning [23], recruitment
maneuvers [24], esophageal manometry [25], and chest wall strap-
ping [26,27]. While the clinical evidence for the efficacy of these
alternative modalities is very sparse [20], there is some evidence-
based on computational modeling that these strategies may reduce
the mechanical potential for VILI [28–31].

Understanding both natural and pathological heterogeneity in
the lungs is thus essential for managing mechanical ventilation,
and for determining the best ventilatory strategies for individual
patients and specific diseases. Experimental methods for assessing
regional lung distension and gas exchange in vivo are often lim-
ited in resolution. As a result, many experimental techniques
require assumptions to infer global lung heterogeneity from either
indirect measurement (e.g., alveolar pressure as a surrogate for
alveolar distension) or partial observation (e.g., measurements
made only near the lung surface). Despite limitations associated
with performing and interpreting these measurements, accurate
quantification of lung heterogeneity is valuable for diagnostic pur-
poses, validation of computational models, and advancement of
medical knowledge.

This review will present a summary of measurement techniques
for assessing and quantifying heterogeneity in respiratory system
structure and function during mechanical ventilation. These

methods have been grouped according to four broad categories
(Fig. 2): (1) inverse modeling of heterogeneous mechanical func-
tion; (2) capnography and washout techniques to measure hetero-
geneity of gas transport; (3) measurements of heterogeneous
deformation on the surface of the lung; and finally (4) imaging
techniques used to observe spatially-distributed ventilation or
regional deformation. These measurement techniques provide
unique, yet limited, perspectives on the manifestations and conse-
quences of mechanical heterogeneity in the lung. As expected,
each technique varies with regard to spatial and temporal resolu-
tion, degree of invasiveness, and risk posed to patients, as well as
suitability for clinical implementation.

Inverse Modeling of Respiratory Mechanics

Heterogeneous processes in the lung are difficult to observe
directly. Computational methods can be used to infer structural heter-
ogeneity via inverse modeling of flows and pressures measured at
the airway opening. This approach, known as system identification,
abstracts the underlying mechanical complexity of the respiratory
system into a minimal set of parameters to define a mathematical
model. Inverse modeling of the respiratory system is usually per-
formed by first recording transient waveforms of flow _V tð Þ and pres-
sure P tð Þ at the airway opening [32]. The respiratory system is
treated as a “black box” or unknown system, which may be identi-
fied by fitting several candidate mathematical models to sampled
pressure and flow waveforms (e.g., using linear or nonlinear regres-
sion), and choosing the best prediction based on quantitative statisti-
cal comparison and/or qualitative interpretive judgment [32].

The simplest model used to characterize the lungs comprises a
resistive element, primarily describing pressure losses due to flow
through airways, in series with an elastic element, primarily
describing pressure losses due to distension of compliant paren-
chymal tissues and/or chest wall (Fig. 3(a)). Assuming that resis-
tive pressure fluctuations are linear with respect to flow with slope
R, and elastic pressure fluctuations are linear with respect to
changes in volume with slope E, the resulting relationship
between pressure and flow becomes

P ¼ R _V þ EV þ P0 (1)

where _V and V are the observed flow and volume, respectively,
into the lung. The pressure variable P may refer to the

Fig. 1 The cycle of ventilator-induced lung injury (VILI). The
presence of mechanical heterogeneity within the lung paren-
chyma results in the maldistribution of inspired volume and in
impairments in gas exchange, due to the mismatching of
regional ventilation and perfusion, as well as heterogenous
CO2 elimination. Regionally heterogeneous ventilation also
may result in VILI, through the processes of volutrauma, atelec-
trauma, and biotrauma. VILI will then worsen existing lung
mechanical heterogeneity.

Fig. 2 Overview of various approaches used to assess hetero-
geneity during ventilation. Measurements of pressure, flow,
and tracer gas concentrations at the airway opening allow
assessment of lung function in terms of respiratory mechanics
and gas exchange, but require careful inverse modeling
approaches to indirectly infer heterogeneity based on time-
varying measurements. Medical imaging modalities allow direct
assessment of spatial heterogeneity in distributed ventilation
via structural deformations across multiple images or contrast-
enhanced imaging. Invasive measurements allow direct assess-
ment of subpleural alveolar mechanics and deformations.
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transpulmonary pressure across the lungs alone, the intrapleural
pressure across the chest wall, or transrespiratory pressure across
the lungs and chest wall together (i.e., if positive pressure varia-
tions are applied to the airway opening, as may occur during
assisted mechanical ventilation). The P0 is the corresponding dis-
tending pressure when flow at the airway opening is zero, and
when the subject’s lung volume is at a reference value at
end-expiration. The mathematical model of Eq. (1) assumes a
mechanically homogeneous lung by a single compartment, yet aptly
predicts pressures and flows in healthy lungs during normal breathing
[32]. Abnormal breathing and/or respiratory pathology often produce
more complicated or nonlinear mechanical function [33–35], which
can be described by increasing the complexity of Eq. (1).

Nonlinear elements describe pressure-flow or pressure–volume
relationships that cannot be represented by a simple linear slope.
Transient changes in lung structure, and the resulting changes in
mechanical function, reflect heterogeneous processes that can be
described by the predictive power of nonlinear elements. For
example, Kano et al. identified a volume-dependent elastance to
characterize intratidal variations in elastance caused by intratidal
recruitment or overdistension [33]

P ¼ R _V þ E1 þ E2Vð ÞV þ P0 (2)

The effective elastance of the lung at any given level of inflation
is represented by two parameters: a linear component E1 and a
volume-dependent component E2V. After model regression, the
sign of E2 and its magnitude relative to E1 convey useful informa-
tion about the presence and amount of global lung recruitment or
overdistension. The relative amount of volume-dependent ela-
stance can be described by the %E2 index

%E2 ¼
E2V

E1 þ E2V
(3)

Large negative values of %E2 indicate decreasing lung elastance
during inflation and suggest substantial recruitment of the lung.
However, large positive values of %E2 indicate increasing lung
elastance during inflation and may suggest strain-stiffening or
overdistension of the parenchyma [36]. Thus, a heterogeneous dis-
tribution of recruitment or overdistension may be inferred from a
nonlinear elastance model. However, %E2 may not always be a
reliable discriminator of recruitment and overdistension, at least
as measured with computed tomographic (CT) imaging in

severely injured lungs [36]. The occurrence of both recruitment
and overdistension simultaneously in different lung regions may
produce counterbalancing variations in total lung elastance meas-
ured at the airway opening. Thus %E2 is only indicative of
volume-dependence in total lung elastance and may be used to
infer heterogeneous lung recruitment or overdistension only when
the occurrence of these two processes is mutually exclusive.

Increased model complexity can also be achieved using an
alternative arrangement of multiple resistive and elastic elements
representing structural heterogeneity [9]. For example, a heteroge-
neous distribution of tissue elastance in patients might be
described by a two-compartment heterogeneous elastance model,
as shown in Fig. 3(b). The equation of motion for this system is
given by [32]

2R _P þ Ea þ Ebð ÞP ¼ R2 €V þ Ea þ Ebð ÞR _V þ EaEbV þ P0 (4)

Note that the model complexity of Eq. (4) has increased greatly
compared to Eq. (1). Despite the addition of only one new param-
eter (Eb), two new higher-order derivatives of pressure and flow
are required. Due to increasing analytical and computational com-
plexity associated with the regression of multicompartmental
models in the time domain [37], frequency-domain analysis may
at times be preferable. The transfer function relating pressure and
flow in this system as a function of frequency (f ) is described by
its mechanical impedance Z

Z fð Þ ¼ Rþ Ea

j2pf

� ��1

þ Rþ Eb

j2pf

� ��1
" #�1

(5)

where j ¼
ffiffiffiffiffiffiffi
�1
p

. As a function of f, Eq. (5) yields a complex-
valued spectrum, with real part describing energy dissipation (i.e.,
in-phase pressure and flow oscillations) and imaginary part
describing energy storage (i.e., out-of-phase pressure and flow
oscillations). Respiratory impedance Z can be measured in vivo at
multiple values of f using various oscillometric techniques [38],
such as the application of pseudo-random broadband flow and
pressure excitations at the airway opening and estimation of the
transfer function [39]. The patient’s impedance spectrum may
then be fit by the model-predicted impedance at the measured fre-
quencies [39,40].

Otis et al. defined a model of lung heterogeneity identifying
two conceptual compartments (i.e., not necessarily distinct ana-
tomic structures) with different mechanical time constants [41].
Otis’ findings suggested a mechanism by which lung regions with
different resistive and elastic properties could not only receive dif-
ferent proportions of the volume delivered at the airway opening
but could also receive their respective volume oscillations at dif-
ferent phases of the oscillatory cycle relative to each other [41].
Glapinski et al. described a metric for estimating mechanical het-
erogeneity based on fitting the Otis model to measured data and
subsequently computing the ratio of mechanical time constants
between the two compartments [42]. Other investigators have
defined models of heterogeneously distributed mechanical proper-
ties, such as airway resistance and tissue elastance, characterized
by predefined probability distributions [35,43–46]. When fit to
mechanical impedance spectra of either anatomically-structured
computational models [47] or animal models of heterogeneous
lung injury [48], these heterogeneous models described the pres-
ence, severity, and distribution of the mechanical heterogeneity
within the lungs.

While increasing complexity of a model may increase its pre-
dictive power, it is possible that any additional parameters may
yield no meaningful contribution to its physiologic interpretation
or relevance. Accordingly, excessive complexity inhibits the inter-
pretive usefulness of a model, potentially obfuscating the strong-
est predictors of nonlinear mechanical function amidst an array of
superfluous parameters. Often, the greatest amount of information
is gleaned from minimally complex models. In other words, the

Fig. 3 Inverse models of respiratory mechanics, including
pressure losses over resistive (R) and elastic (E) elements
between the airway opening (Pao) and the pleural space (Ppl):
(a) single compartment model representing homogeneous air-
way resistance and tissue stiffness and (b) two-compartment
model representing homogeneous airway resistance and a
bimodal distribution of tissue stiffness
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most useful model employs the fewest parameters required to
achieve a reasonably accurate prediction of observed mechanical
function.

Statistical comparisons such as the Akaike information criterion
favor models that more closely describe the observations, yet dis-
favor models with greater numbers of parameters, quantitatively
balancing predictive power against complexity [32,47,49]. None-
theless, no statistical comparison is capable of determining the
physical and physiologic relevance of a model regression—a qual-
itative judgment is also required. For example, negative elastance
parameters violate physical assumptions of pressure–volume
interaction in compliant compartments. Likewise, values of ela-
stance too small or too large to realistically describe lung tissue
compliance may be considered physiologically irrelevant. Both
cases suggest that the model in question does not appropriately
describe the mechanical structure of the respiratory system which
generated the observed data. Although parameter regressions that
yield nonphysical or nonphysiologic values may present quantita-
tively superior fits, their exclusion may be warranted based on
qualitative judgment. Whenever possible, model selection should
consider a priori information about the patient or subject.

Capnography and Washout Techniques

Volume capnography is the measurement of the carbon dioxide
(CO2) concentration (or partial pressure) at the airway opening
during expiration, as transported by advective and diffusive mech-
anisms from the alveolar spaces via the conducting airways [50].
Figure 4 shows an example of CO2 concentration as a function of
exhaled gas volume. This concentration is expected to be minimal
(i.e., near zero) during the initial expiratory phase, since the initial
portion of expired gas originates within the larger conducting air-
ways (i.e., dead space) at end-inspiration, where no respiratory
gas exchange occurs. The final portion of expired gas originates
with the alveolar spaces at end-inspiration, and thus contains
higher concentrations of CO2 and lower concentrations of oxygen
than dead space gas. Between the initial and final expiratory
phases, there is a transitionary phase during which expired gas
comprises a mixture of both dead space and alveolar gases. The
profile of CO2 plotted against time or exhaled volume, especially
during the transitionary and final phases, are sensitive indicators

of several anatomic and physiologic factors [51–54]: (1) asymme-
try of the anatomic dead space, or the volume of the conducting
airways, (2) physiologic dead space, or the volume of alveolar
spaces with deficient gas exchange, and (3) heterogeneous distri-
bution of inspired and expired volume. Volume capnography may
be useful for determining the overall degree of ventilation-
perfusion heterogeneity relative to normal exhaled CO2 profiles
[55]. However, the technique may be limited by the difficulty of
discerning the relative contributions from each of the three afore-
mentioned sources of heterogeneity in gas transport.

Alternatively, multiple-breath washout techniques use an inert
and minimally soluble tracer gas (e.g., nitrogen), rather than CO2,
by first equilibrating the tracer gas throughout the lungs and then
measuring its rate of elimination during tidal breathing (e.g., using
100% inspired oxygen) [56]. Unlike CO2, the tracer is not replen-
ished between breaths. Depending on the solubility of the tracer in
the blood, its exhaled concentration will largely be independent of
the distribution of perfusion. The number of breaths required to
clear the lung of the tracer gas (or at least equilibrate alveolar and
ambient concentrations), quantified by the lung clearance index,
may provide a robust and sensitive indicator of ventilation hetero-
geneity [57,58]. Other indices obtained from the washout may
quantify functional heterogeneities associated with convective
and diffusive transport processes, and provide general anatomic
information as gas transport shifts from conductive to acinar air-
ways [59]. There are also empiric descriptions of the distributions
of ventilation time constants for quantifying heterogeneity [60].
However, without the combined use of imaging techniques (as
discussed below), multiple-breath washout does not provide spa-
tial information about the regional distribution of gas transport.

The multiple inert gas elimination technique (MIGET) is a
more powerful measurement technique, relying on gas transport
heterogeneity to predict distributions of ventilation and perfusion.
Here, a dissolved mixture of different inert gases (typically six or
more) with unique blood-gas partition coefficients is intrave-
nously infused, and the resulting steady-state retention and excre-
tion rates of each gas are measured using gas chromatography on
samples of arterial blood and mixed expired gas, respectively
[61,62]. The retention and excretion rates for all gases can then be
regressed by a computational model comprising lung compart-
ments with distributed ventilation-to-perfusion ratios ( _V= _Q),
yielding distributions of gas flow and blood perfusion apportioned
into each _V= _Q compartment [63,64]. The predicted _V= _Q distribu-
tions provide insight into the size and severity of over-ventilated,
under-ventilated, and shunted compartments. However, such com-
partments are purely conceptual, and consequently do not repre-
sent anatomic structures.

Lung Surface Measurements

Measurements of distributed lung deformation and pressure can
be made directly on the surface of exposed or excised lungs such
as in stroboscopic photography and videomicroscopy. Typically,
these measurements require surgical sternotomy, thoracotomy,
and/or total lung excision to expose the lung surface, which
removes the influence of the chest wall on the mechanics of venti-
lation. Although lung surface measurements are not viable for
clinical use in patients, information learned from research studies
which directly visualize the response of alveoli to changes in
mechanical ventilation settings has offered a unique insight into
locoregional heterogeneity and has informed general mechanical
ventilation practice guidelines [65]. Stroboscopic photography
measures surface deformations during periodic motion, with syn-
chronization between camera and strobe light to capture a series
of still images spaced evenly throughout the ventilatory cycle.
Using this technique, Lehr et al. [66] found increased heterogene-
ity in the distributions of both magnitude and phase of lung sur-
face deformations during high-frequency oscillatory ventilation,
suggesting that ventilation throughout the lung may be nonuni-
form and asynchronous at high frequencies compared to

Fig. 4 Example volume capnograph for estimation of anatomic
dead space. Percent of exhaled CO2 is plotted against exhaled
gas volume for a single breath. A line tangent to phase III (slop-
ing upward dashed) and a vertical line through phase II (vertical
dashed) are positioned such that areas p and q are equal. Vol-
umes along the x-axis to the left and right of the vertical line are
assumed to correspond to the dead space volume (VD), and the
effective alveolar volume (Valv), respectively. Reproduced with
permission from Ref. [132]. Copyright 2018.
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conventional breathing frequencies. Stroboscopic photography is
especially advantageous for capturing lung motion at high fre-
quencies of oscillation without blur artifact when cameras with
high frame rates are not accessible. Other specialized image
acquisition and processing techniques may be used to assess lung
surface deformations during ventilation with conventional fre-
quencies. For example, digital image correlation may be per-
formed with multiple cameras acquiring images from different
perspectives, allowing reconstruction of a three-dimensional
model of the lung surface and estimation of regional surface
strains dynamically during ventilation [67].

Videomicroscopy is a video capture technique utilizing high-
powered objective lenses, whereby it is possible to generate indi-
vidual alveolar area/airway pressure curves to analyze the
dynamic changes occurring in alveoli (Fig. 5) [65,68]. Namati
et al. [69] developed a similar optical confocal process to measure
alveolar dynamics during quasi-static inflation and deflation
maneuvers and showed that recruited alveoli become smaller and
more numerous after inflation, suggesting that normal, physio-
logic tidal volume change is modified by alveolar recruitment
rather than expansion. In a separate videomicroscopy study [70],
recruited alveoli were found to have a normal size distribution
without demonstration of large, overdistended alveoli. However,
surfactant de-activation led to a heterogeneous alveolar distribu-
tion with two general subsets: a large population of small, col-
lapsed alveoli, and a smaller population of large, overdistended
alveoli. The application of higher mean airway pressures partially
attenuated the effects of surfactant de-activation by revealing a
more homogeneous set of alveoli, but never achieved a normal
distribution after deflation [70]. These findings were supported by
Mertens et al. [71], who showed that loss of compliance in injured

alveolar clusters resulted in the redistribution of inspired tidal vol-
umes to more compliant (but larger) alveoli, potentially promoting
alveolar distension and overall spatial heterogeneity.

In either case, the primary limitations of lung surface analyses
are: (1) restricted imaging of only the outer surface of the lung,
which may not accurately reflect deformations throughout the
majority of parenchyma where there is increased alveolar interde-
pendence; (2) the loss of information incurred during the reduc-
tion of spatial dimensions when projecting three-dimensional
motion onto two dimensions; (3) stabilization of the moving lung
during imaging, introducing further artifact [70]; (4) absence of
the lung and chest wall interactions secondary to an open chest;
and (5) inability to evaluate the conducting airways, which also
demonstrate heterogeneous motion [72].

Fig. 5 In Vivo photomicrographs of subpleural alveoli in a Tween-injured lung at inspiration and expi-
ration with individual alveoli identified, outlined, and colored with subsequent quantification of area.
The area of inflated alveoli is reported as a percentage of the total photomicrograph (a). Alveoli were
analyzed at varying PEEP levels: 5, 10, 16, and 24 cm H2O. Alveoli are colored in blue and nonalveolar
tissue in gray (b). Data are shown as the mean with error bars indicate standard error of the mean.
*p < 0.05 between groups and between inspiration and expiration within group. Adapted from Ref. [65].

Fig. 6 Example of the alveolar capsule system used by Fred-
berg et al. to measure alveolar pressure. Reproduced with per-
mission from Ref. [73]. Copyright 1984 by APS.
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Alternatively, alveolar pressures near the lung surface may be
directly measured using alveolar capsules. Each capsule is bonded
and hermetically sealed to a small region of the lung surface, after
which a puncture of the pleural surface through the center of the
capsule exposes a pressure transducer directly to pressure varia-
tions in the alveolar spaces [73], and quantifies local magnitudes
and phases of surface alveolar pressures during ventilation
(Fig. 6). Alveolar capsules have been used in a number of studies
investigating mechanical heterogeneity of the lungs during oscil-
lometric impedance measurements [74,75], bronchoconstriction
[76,77], and lung recruitment [78]. The technique provides a
direct measurement of alveolar pressure at the lung surface. How-
ever, such direct measurements may not necessarily be representa-
tive of the actual distribution of alveolar pressures throughout the
entire lung, and thus cannot be used to infer the heterogeneity of
ventilation distribution.

Lung Imaging

Medical imaging technology produces spatially-oriented distri-
butions of a measured property, depending on technique. The
interpretation of any imaging data depends on the image quality,
which in turn depends on several factors including spatial resolu-
tion, signal-to-noise ratio, sharpness, and absence of artifacts. For
example, X-ray imaging passes high-energy photons through a
subject, to construct a spatially-oriented distribution of absorption
or scatter. A plain chest radiograph may be the most readily avail-
able X-ray modality for lung imaging at the bedside, although as a
two-dimensional projection, it may not convey sufficient spatial
information of heterogeneous pathologic processes for diagnosis
or monitoring treatment [79].

Three-dimensional images describing lung structure and anat-
omy may be obtained using CT imaging. The high dynamic range
and high contrast of radiodensity values facilitates distinction of
air, tissue, and bone. The linearity of the radiodensity scale facili-
tates the calculation of the relative amounts of air and tissue
within each lung voxel, yielding spatial distributions of lung aera-
tion [80]. Submillimeter resolution in CT images facilitates the
segmentation of lung external boundaries, airways, blood vessels,
and fissures [81–84]. Thus, heterogeneity in the lung can be
observed directly using CT imaging, which reveals characteristic
alterations in the structure and/or aeration for pathologies such as
metastatic cancer, emphysema, pulmonary fibrosis, or pulmonary
edema. Moreover, heterogeneity of the measured property can be
directly assessed by statistical methods applied to the voxels
within the lung [80,85].

Computed tomographic image acquisition occurs over several
seconds, during which the subject usually remains motionless to
minimize blurring in the resulting image. This restriction limits
the use of CT for observing dynamic processes such as changes in
lung structure during inspiratory and expiratory phases of breath-
ing. CT methods for approximating dynamic alterations in lung
structure use either quasi-static approaches [48,86], or respiratory-
gated acquisition [87,88] both of which require scanning the sub-
ject multiple times. The resulting four-dimensional images can be
used to visually track spatial changes in regional aeration, lung
recruitment, and anatomical landmarks (Fig. 7). Volumetric defor-
mations may be quantifiably assessed using image registration
techniques that compute a spatial transformation between images
representing different inflation levels or different breath phases
[89,90]. Thus heterogeneity in the distribution of flow throughout
the lung can be measured using four-dimensional reconstruction

Fig. 7 Changes in regional aeration during porcine oleic acid lung injury obtained using dynamic CT
reconstruction [91]. Ranges of CT Hounsfield density correspond to levels of lung aeration: (a) trans-
verse sections of the CT images are shown at four time points during a single pressure-controlled
breath. (b) time course of aeration levels during the breath. Note that 26% of the imaged lung cyclically
alters between normally and poorly aerated levels during the breath. Data modified from Ref. [92].
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[91,92], in combination with deformable image registration [93].
Further insight into heterogeneity of tissue mechanical properties
and regional response to changes transpulmonary pressure may be
gained through the interpretation of image-based deformation
models with specific material assumptions (e.g., poroelastic mod-
els of lung parenchyma [94,95].

Magnetic resonance imaging (MRI) historically has had limited
applications in imaging respiratory motion due to prohibitively
long acquisition durations, as well as low proton density in lung
tissues. Multiple breath-holds are required for some MRI sequen-
ces, producing images in which finer anatomic structures are not
apparent in part due to blurring caused by breath-to-breath vari-
ability [96–98]. Two-dimensional acquisition supports much
greater acquisition rates compared to full three-dimensional imag-
ing (e.g., of the order of 10 Hz [99,100]), yet produces only a sin-
gle cross section of the thoracic cavity. Image registration
techniques are not applicable to two-dimensional imaging because
the computational methods cannot account for motion in the
direction orthogonal to the acquired plane. Modern advancements
in MRI technology and signal processing algorithms have sub-
stantially improved acquisition capabilities. Recently developed
sequences can provide two-dimensional image acquisition at rates
up to 100 Hz [101]. Other advancements include the use of paral-
lelized acquisition, compressed sensing, and sparse reconstruction
to achieve 2–15-fold increases in sampling rate [102–104].

Differentiating between air and parenchymal tissues in MRI
remains a challenge, despite the use of high-acquisition-rate techni-
ques to mitigate motion artifact. Signal-to-noise ratio is inadequate
because of the low overall proton density throughout the lung, and
furthermore because of the large differences in magnetic suscepti-
bility at the interfaces between air and parenchymal tissues
[96–98]. Ultrashort echo time (UTE) sequences have been investi-
gated as a means of resolving MRI signals from parenchymal tis-
sues [105]. Other MRI methods directly measure the mechanical
properties of the tissues, instead of deformation. For example, mag-
netic resonance elastography is used to estimate distributed shear
stiffness in parenchymal tissues by applying shear waves at fre-
quencies up to 200 Hz and measuring the resulting MRI signal
phase variability caused by small-amplitude tissue displacement
[106,107]. Other approaches involve selectively tagging lung
parenchyma with a magnetization pattern, a technique known as
spatial modulation of magnetization (SPAMM), and subsequently
measuring deformations in the magnetized pattern during breathing
[108], using a similar two-dimensional analysis applied to deforma-
tions in patterns marked on the surface of ventilated lungs [66].
MRI methods are incredibly varied and complicated, and may yet
come to rival 4DCT methods in spatial and temporal resolution of
lung structure, enabling quantitative assessment of distributed
respiratory mechanics without harmful radiation exposure.

As a surrogate for flow heterogeneity or lung deformation het-
erogeneity, gas transport heterogeneity can be measured directly
using several imaging modalities, most involving the combination
of an anatomic map of the respiratory system overlaid with spa-
tially distributed values of a tracer gas concentration. Such imag-
ing modalities include dual-energy X-ray CT in combination with
radiodense xenon or krypton tracer [109,110], positron emission
tomography (PET) in combination with radioactive isotope
nitrogen-13 tracer [111], single-photon emission computed
tomography (SPECT) with a radioactive tracer gas such as
krypton-81m or technetium-99m [112], and MRI in combination
with hyperpolarized helium-3 or xenon-129 tracer [85]. Temporal
variations in tracer gas concentration within a given lung region
indicate the regional action of advective and diffusive transport
phenomena [113]. SPECT imaging is used in both research and
clinical settings to assess ventilation and/or perfusion, with a high
correlation between regional ventilation heterogeneity and hetero-
geneity indices derived from multiple-breath washout [114,115].
Hyperpolarized gas MRI using xenon-129 is emerging as a power-
ful modality for functional imaging due to the ability to differenti-
ate xenon signals originating from the airspaces, blood, and

interstitial tissue [116,117], in addition to the ability to assess appa-
rent diffusion coefficient via diffusion-weighted imaging [118].
Recent methods using both PET and CT imaging data, combined
with computational modeling, can estimate regional gas exchange
as distributions of oxygen uptake and CO2 elimination [119].

Electrical impedance tomography (EIT) measures changes in
the electrical impedance (equivalent to the inverse of conduct-
ance) of tissues using a series of electrodes placed on the surface
of the subject, usually forming a ring around the heart and lungs
in the transverse plane [120]. Air spaces inside the lung exhibit
higher electrical impedance than the tissues containing water and
electrolytes, thereby providing contrast in the electrical imped-
ance image and a means of assessing spatially distributed aeration.
EIT images are usually compared to a reference image at a base-
line lung volume (e.g., functional residual capacity at end-expira-
tion), such that the resulting “difference” image provides spatially
distributed changes in aeration [121]. Difference EIT is useful
clinically for detecting pneumothoraces, lung collapse, as well as
intratidal recruitment and derecruitment [122]. EIT images can be
acquired at extremely fast rates (i.e., of the order of milliseconds
per frame). Fourier analysis of individual voxels in images
acquired faster than 60 frames per second can resolve frequency
content in voxel aeration up to 30 Hz, demonstrating utility for the
assessment of heterogeneous ventilation distribution even during
high-frequency ventilation [123]. Temporal fluctuations in EIT
signal can be processed according to respiratory rate and heart
rate to assess coarse intratidal ventilation and perfusion dynamics,
with potential contrast enhancement via hypertonic saline [122].
The primary challenge of using EIT is the difficulty of solving the
ill-posed inverse transformation, which converts electrical imped-
ance measurements at the boundary of an object into spatial distri-
butions of impedance (and hence aeration) within the object
[124]. Solutions are nonunique, highly-sensitive to noise, and
highly dependent on the specific geometry of the subject. Accord-
ingly, current EIT approaches produce images representing feasible
and stable solutions yet with an extremely low spatial resolution
(i.e., of the order of centimeters in adult patients), despite temporal
resolution of the order of milliseconds. Improved spatial resolution
can be achieved to an extent by increasing the number of electrodes
[125]. Another limitation of EIT is its reliance on a single ring of
an electrode array, which results in only a two-dimensional cross
section with large slice thickness. Recent investigations into three-
dimensional approaches using electrodes arranged in multiple
transverse rings [126–129] may provide improved localization of
changes in aeration within each image slice. Nevertheless, detec-
tion of ventilation heterogeneity using EIT remains limited to large
spatial scales despite the excellent temporal resolution.

The primary utility of any imaging modality for the quantitative
assessment of heterogeneous gas transport, aeration, or mechani-
cal properties in the lung is its ability to present spatial and ana-
tomic information. Imaging modalities offer direct measurement
of distributed properties throughout lung tissues in the context of
local anatomic structure, whereas the previously discussed meth-
odologies may only infer whole-lung heterogeneity based on
measurements performed at the airway opening or pleural surface.
Disadvantages of imaging methods include high cost and scarcity
of contrast and tracer agents, exposure to ionizing radiation, and
high computational costs associated with image reconstruction,
storage, and processing [84,91]. Continuing advancements in
detector technology and reconstruction algorithms offer improve-
ments in image quality and spatial resolution, as well as reduc-
tions in radiation exposure. Additionally, advancements in
computational hardware and machine learning algorithms may
yield automated feature extractions with substantial reductions in
computational overhead [130].

Implications for Mechanical Ventilation

The ultimate motivation for measuring mechanical heterogene-
ity in the lung is the prospect of improving patient care and
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reducing the morbidity and mortality associated with respiratory
failure and disease. Ventilator-induced lung injury (VILI) remains
a major risk for patients receiving positive pressure mechanical
ventilation, due to excessive parenchymal strain and repetitive
atelectasis. VILI is progressively worsened by mechanical hetero-
geneity in lung tissues, which results in maldistribution of ventila-
tion. Nonetheless, the spatial distributions of ventilation and tissue
mechanical properties are difficult to measure or observe directly
in critically ill patients.

Measurements made at the airway opening (including washout
techniques and impedance measurements) may be sensitive to
changes in the overall degree of heterogeneity in lung structure
and/or function, yet provide an only indirect assessment of the dis-
tributed values, and thus nothing on supplementary spatial corre-
spondence. Direct transduction of mechanical signals is possible
only through highly invasive procedures that may comprise the
integrity of the lung and/or disrupt its normal function (e.g., sur-
gery to expose and/or penetrate the pleural surface), and is there-
fore unsuitable for many research applications. Accordingly, the
best approaches for precise measurement of regional parenchymal
strain within an intact respiratory system during tidal ventilation
involve using quasi-static or respiratory-gated CT or MR imaging,
in combination with image registration [48,85,93]. However,
imaging techniques may lose practical clinical utility for in vivo
heterogeneity assessment if the subject is ventilated at extremely
fast rates, given that image quality is diminished by motion arti-
facts that cannot be compensated using current reconstruction
approaches. Measurement of distributed flow and parenchymal
strain throughout the lung during ventilation at high frequencies
may currently not be achievable with most available CT method-
ologies, without substantial exposure to ionizing radiation [93].

Conclusions

Useful measurements of ventilation heterogeneity in healthy
and diseased lungs provide direct quantification of distributed
properties such as flow, pressure, and gas composition. However,
improved spatial resolution of a measurement technique often
comes at the cost of increased invasiveness and/or risk to the
patient. Direct measurements of heterogeneous lung function or
structure are difficult to obtain in critically ill patients, given the
risks involved in measurement (e.g., patient transport, suspension
of mechanical ventilation) which may offset the potential diagnos-
tic or therapeutic benefit of the information obtained. Indirect
measurement techniques that are clinically feasible in critically ill
patients can provide useful information about inferred lung heter-
ogeneity, especially when such results can be validated using
direct high-resolution spatial and temporal measurements. Meas-
urements of lung heterogeneity offer valuable diagnostic informa-
tion on the pattern and extent of lung injury, and may provide
decision support for the selection and management of alternative
mechanical ventilation modalities that minimize the adverse
impact of pathological heterogeneity in critically ill patients.
Future directions for improving the clinical utility of lung hetero-
geneity assessment could involve training artificial intelligence
models to predict lung heterogeneity indices derived from direct
measurement techniques, using point of care data from indirect
measurements more easily obtained at the bedside. Machine learn-
ing models for the detection of patterns representing underlying
heterogeneity may even surpass rule-based approaches to inverse
modeling and system identification [84,130,131], without the
inherent restrictions of compartmentalized structures or regression
equations.
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